ВИРТУАЛИЗИРОВАННЫЕ ПРИБОРЫ, ИСПОЛЬЗУЮЩИЕ МЕТОД ВИХРЕВЫХ ТОКОВ, ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ РАЗЛИЧНЫХ ОБЪЕКТОВ И ОКРУЖАЮЩЕЙ СРЕДЫ

С. Ф. Дмитриев, С. Г. Панов, А. В. Ишков

Алтайский государственный университет г. Барнаул

В течение ряда лет на кафедре экспериментальной физики Алтайского государственного университета реализуется концепция современных измерительных программноаппаратных комплексов, которая базируется на максимальной виртуализации функций прибора не связанных с непосредственным получением информации от контролируемого объекта и среды [1]. Ее практическое воплошение стало возможным с появлением современных высокопроизводительных ЭВМ. позволяющих основной алгоритм работы измерительного устройства, в части первичной обработки сигнала, его преобразовании, сравнении со стандартом, накоплении результатов последовательных измерений и их статистическую обработку, вывод полученных результатов и управление функциями измерителя реализовать в виде специальной компьютерной программы, написанной на языке высокого уровня.

Конечно, у таких приборов всегда открытой остается задача получения цифрового сигнала от первичного датчика для его последующей обработки программой - виртуальным прибором, однако для многих прикладных задач оказываются достаточными возможности встроенных практически в любую ЭВМ АЦП/ЦАП – звуковых карт. Необходимым условием такого применения звуковых карт являются низкие мощности, развиваемые в цепи первичного преобразователя датчика и ограниченный звуковым диапазон используемых частот. Соблюдение этих условий, тем не менее, позволяет реализовывать большую гамму измерительных устройств, находящих применение в неразрушающем контроле различных параметров объектов и окружающей среды.

В задачах неразрушающего контроля особое место отводится методу вихревых токов (МВТ). МВТ базируется на возбуждении в контролируемом объекте или среде под воздействием переменного магнитного поля вихревых токов и одновременной регистрации вторичного поля – поля наведенных вих-ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2008

ревых токов [2]. Как оказалось величина вторичного поля сложным образом зависит от параметров контролируемого объекта и если должным образом выстроить математическую модель отклика первичного преобразователя на поле вихревых токов, оказывается возможным определять раздельно более десятка параметров объекта. Но задача отклика первичного преобразователя в МВТ является не только математической – сводяшейся к отысканию решения соответствующего уравнения для векторного потенциала в случае определенного значения обобщенного параметра, учитывающего свойства объекта, но и физической и инженерной - связанной с установлением оптимальных условий измерений и конструкции самого датчика.

Наиболее часто в современных МВТ в качестве первичных преобразователей используют вихретоковые трансформаторы накладного типа (BTHT), которые, возбуждая вихревой ток в исследуемой среде с помощью возбуждающей обмотки, фиксируют параметры, создаваемого им поля - с помощью измерительной обмотки. И если для однородных сред и макроразмерных объектов теоретические расчеты зависимостей сигналов таких датчиков от параметров среды известны и описаны в литературе [2, 4], то аналогичная задача для композитных сред и наноразмерных материалов по-прежнему окончательно не решена. Незначительные структурные и физико-химические изменения в таких объектах вызывают малые изменения обобщенного параметра, учитывающего сумму характеристик материала, датчика и самого метода, поэтому для ответа на вопрос о возможности применения BTHT для неразрушающего контроля наноматериалов требуется решение основной задачи вихретоковой дефектоскопии для малого значения обобщенного параметра.

Математически эта задача была решена нами ранее [3] и на ее основе предложена расчетная модель отклика ВТНТ для случая сплошной среды, которая и была использо-15 вана для аналогичного расчета в случае композитного многослойного материала с наноразмерными параметрами слоев (рисунок 1).

При нависании витка с током над многослойной средой в плоскости, параллельной границам раздела слоёв, уравнения Максвелла для среды принимают вид:

гот $\vec{H} = \vec{J}_{cT}$; гот $\vec{E} = -\partial \vec{B} / \partial t$, (1, 2) где \vec{H} и \vec{E} – векторы напряженности соответственно магнитного и электрического полей; \vec{B} - вектор магнитной индукции; \vec{J}_{cT} – вектор плотности полного тока.

Эти уравнения можно свести к известному уравнению Гельмгольца для векторного потенциала \vec{A} , определяемого выражением $\vec{B} = \operatorname{rot} \vec{A}$, которое в монохроматическом поле примет вид:

$$\nabla^2 \vec{A} + k^2 \vec{A} = -\mu_a \vec{J}_{cmop}, \qquad (3)$$

где $k^2 = -j\omega\mu_a \sigma; \ j = \sqrt{-1}$.

Решение уравнения (3) находили в цилиндрической системе координат методом интегрального преобразования Фурье-Бесселя.

Были проведены расчёты напряжений, вносимых в измерительную обмотку BTHT, для малых R₁, R₂, h, x, несущественности магнитных потерь и определяющем влиянии гистерезисных потерь с $tq\delta$ в магнитопроводе датчика. Расчёты проводились при следующих параметрах датчика: $\mu_{max}=5\times10^2$ Гн/м, σ =22,5×10⁶ См/м, f=3×10³ Гц, сила тока в обмотке датчика *J_{mo}*=30 mA, число витков измерительной обмотки W₁=20, число витков токовой обмотки W₂=400, средний радиус измерительной обмотки $R_1 = 0.5 \cdot 10^{-4}$ м, средний радиус токовой обмотки $R_2=1,3\cdot10^{-4}$ м, расстояние датчика до поверхности ОТ

 $h_1=0\div0,2\times10^{-3}$ м, расстояние от эквивалентного витка, заменяющего возбуждающую обмотку трансформаторного датчика отраженного поля, до объекта $h_2=0\div0,2\times10^{-3}$ м. Результаты этих расчетов сведены в таблицу 1.

Таблица 1 – Результаты расчетов

<i>h</i> ₁, м	0	0,0001	0,0002				
<i>h</i> ₂ , м	0,0002	0,0002	0,0002				
β_0	0,1898	0,2993	0,4088				
$\xi = \frac{h_1 + h_2}{D_3}$	0,77	0,73	0,71				
$Re\phi_1(\lambda) \times 10^4$	69	100	160				
Im $\varphi_1(\lambda) \times 10^4$	1	2	6				
<i>U</i> ₀ , B	1,1	0,536	11,08				
Re(<i>U</i> _{вн}) ×10 ²	0,756	1,25	2,12				
Im(<i>U</i> _{вн})×10 ⁴	1,1	2,5	0,794				

Анализ проведенных расчетов и зависимостей импеданса от действительной части вносимого напряжения в измерительную обмотку ВТНТ для случая наноразмерного объекта показывают, что с заданными параметрами датчика можно уверенно фиксировать сигналы от объектов, линейные размеры которых не превышают 2 500 нм². Соответствующий годограф для низких значений обобщенного параметра нелинейно зависит от параметров нависания ВТНТ над объектом (рисунок 2).

Таким образом, использование предложенной модели с соответствующими допущениями позволило численно рассчитать напряжение, наводимое в измерительной обмотке ВТНТ для многослойной наноразмерной композитной среды в зависимости от взаимного расположения обмоток датчика и обобщенного параметра среды.

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2008

ВИРТУАЛИЗИРОВАННЫЕ ПРИБОРЫ, ИСПОЛЬЗУЮЩИЕ МЕТОД ВИХРЕВЫХ ТОКОВ, ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ РАЗЛИЧНЫХ ОБЪЕКТОВ И ОКРУЖАЮЩЕЙ СРЕДЫ

С инженерной же точки зрения задача сводится к созданию сверхминиатюрного датчика-BTHT с указанными выше параметрами. Конструкция разработанного нами датчика приведена ниже (рисунок 3).

Рисунок 3 – Схема конструкции вихретокового преобразователя

Датчик выполнен по схеме дифференциального BTHT с тремя катушками, одна из которых является калибровочной, а другие – возбуждающей и измерительной. Дифференциальное включение катушек датчика и фокусировка возбуждающего поля его сердечником позволяет проводить локальные исследования материалов на площади до 50-100 нм. Электрические характеристики датчика позволяют подключать его непосредственной к входу и выходу звуковой карты ЭВМ.

На основе этой конструкции датчика и был разработан ряд программно-аппаратных комплексов, представляющих собой компактные, мобильные устройства, устанавливаемые на любые типы современных ПК, функционирующих под управлением ОС Windows 95/98/2000/ХР (рисунок 4). ИЭПП-1 представляет собой виртуализированный прибор, основные процедуры которого выполняют специализированные компьютерные программы (цифровой преобразователь перемещения зонда, виртуальный генератор, программа управления гетеродином, накопитель и фазоанализатор сигналов от датчика).

Прибор позволяет определять основные физические параметры полупроводниковых материалов, состояние омических и выпрямляющих контактов, качество исполнения планарных структур. Исследование физических характеристик полупроводниковых структур основано на зависимостях напряженности поля вихревых токов от свойств материала, а топологические характеристики планарных структур могут быть определены из функции напряжения измерительной обмотки ВТНТ от расстояния до объекта при восстановлении траектории перемещения датчика над его поверхностью.

В основу прибора положен метод измерения магнитной составляющей напряженности поля вихревых токов, возникающих в поверхностном слое полупроводника при помещении его в переменное электромагнитное поле высокой частоты (более 100 МГц). Зависимость напряженности поля вихревых токов и толщины скин-слоя в полупроводниковом материале от частоты возбуждающего поля позволяет проводить сканирование планарных структур вплоть до материала подложки, которая в условиях измерения ведет себя как непроводящий материал.

Обеспечение высокой поверхностной локальности (вплоть до 2 500 нм) сканирования достигается использованием оригинального сверхминиатюрного датчика (рисунок 5).

Рисунок 4 – Виртуализированные приборы для контроля параметров объектов и сред

Так для контроля полупроводниковых материалов, топологии интегральных микросхем и элементной базы РЭА был разработан комплекс ИЭПП-1.

ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2008

Рисунок 5 – Внешний вид сверхминиатюрного ВТНТ-датчика на пластине *GaAs*

Датчик позволяет осуществлять фокусировку возбуждающего магнитного поля на небольшой области материала, а сильное затухание поля вихревых токов в направлении перпендикулярном его распространению в полупроводниках на высоких частотах, исключает возможность вовлечения в процесс лежащих вблизи исследуемой областей и частей материала.

Аппаратно, комплекс представлен СВЧзондом, состоящим из датчика, сопряженного с однотранзисторным гетеродином.

В программную часть входит «софт» для управления частотой и параметрами гетеродина, генерации, приема и обработки сканирующих сигналов и сигналов отклика (виртуальный генератор), измерения и статобработки измеренных параметров, управления и обратной связи с устройствами перемещения зонда. Подключение зонда, питание его гетеродина и ВТНТ осуществляется через многоканальное АЦП/ЦАП сигналами виртуального генератора. Регулировка несущей частоты гетеродина в широких пределах позволяет исследовать различные классы полупроводников: *Si, Ge*, системы *AnBm* и др.

По своим характеристикам прибор ИЭПП-1 способен заменить типовые устройства четырехзондового метода, используемого в настоящее время для контроля материалов в полупроводниковой промышленности. Виртуализация всех приборов в составе комплекса делает его универсальным к различным задачам исследования полупроводников, топологии интегральных микросхем и элементной базы РЭА.

Другим важным применением разработанных приборов метода МВТ, является измерение локальных значений и предельнодопустимого уровня напряженности низкочастотного магнитного поля вблизи различных объектов и в окружающей среде. Существующие промышленные магнитометры отечественного производства: МФ 107А, МФ 207, ИМП 6, ПЗ-50, работают в широком диапазоне измерений напряженностей от 0,01 до 18000 А/м, но не обладают необходимой локальностью.

Разработанная конструкция ВТНТ позволяет использовать его как весьма чувствительный элемент магнитометра, отключив его возбуждающую обмотку

Нами был разработан программноаппаратный комплекс для измерения уровня напряженности переменного магнитного моля – виртуализированный прибор – измеритель переменного магнитного поля ИНПМП-5 [5].

Аппаратная часть измерителя состоит из ВТНТ и звуковой карты. Напряжение с приемной обмотки датчика как функция максимального магнитного потока и частоты поступает на микрофонный вход звуковой карты. Используемая в данной работе звуковая карта с параметрами: разрядность АЦП в 16 бит и частота дискретизации 44100 Гц, удовлетворяет выбранной точности измерения 3 %, в диапазоне значений напряженности низкочастотного магнитного поля от 1 до 260, А/м. Калибровка датчика ИНПМП-5 проводилась по блок-схеме (рисунок 6).

Рисунок 6 – Блок-схема калибровки датчика

Генератором задавались определенные значения тока, которые измерялись вольтметром V1 на известном сопротивлении R. ВТНТ помещался в центр намагничивающего витка. В результате программой записывался сигнал определенной амплитуды.

Компьютерная программа позволяет представить данный сигнал в виде массива чисел и вычислить максимальную амплитуду полученного сигнала [6]. Число витков на катушке равно 10, инструментальная погрешность составляет 2,5 %.

АЧХ звукового устройства ЭВМ, использованного в составе комплекса, при уровне входного сигнала 13 мВ, приведена на диаграмме (рисунок 7). Из рисунка хорошо видно, что зависимость постоянна в пределах 500 до 19000 Гц. Неравномерность АЧХ не более ± 10 dB. Наблюдаемый на частотах от 10 до 500 Гц завал АЧХ не более ± 20 dB. АЧХ на частотах выше 18 КГц падает до нуля.

Полученная АЧХ позволяет осуществлять перевод условных единиц сигнала датчика А, ПОЛЗУНОВСКИЙ АЛЬМАНАХ №2 2008

ВИРТУАЛИЗИРОВАННЫЕ ПРИБОРЫ, ИСПОЛЬЗУЮЩИЕ МЕТОД ВИХРЕВЫХ ТОКОВ, ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ РАЗЛИЧНЫХ ОБЪЕКТОВ И ОКРУЖАЮЩЕЙ СРЕДЫ

в единицы напряженности поля H_m A/м, через калибровочную кривую, которая строится по результатам таблицы 2.

Таблица 2 – Зависимость отклика датчика от напряженности поля

I, mA	А,	H _m ,	l mA	А,	H _m ,
	отн.ед.	А/м	т, ША	отн.ед.	А/м
0	0	0	800	1370	156
10	60	7	850	1435	165
30	210	28	950	1580	180
40	330	40	1000	1640	188
100	630	75	1100	1790	202
200	720	87	1150	1865	210
400	980	113	1250	2000	225
500	1060	120	1300	2070	232
700	1215	135	1400	2240	247
750	1290	145	1450	2350	260

Калибровочная зависимость имеет линейный вид, параметры аппаратной кривой находятся по алгоритму МНК и заносятся в память ЭВМ.

Программа обработки была реализована нами на языке C++ в инструментальной оболочке Builder C++ v.6.0.

Алгоритм работы программы содержит следующие последовательности действий: 1 - проверка на наличие звуковых устройств, установленных в системе; 2 – установка связи со звуковым драйвером; 3 - при нажатии кнопки «Start» происходит инициализация буферов и запуск звукового драйвера; 4 драйвер заполняет буфер значениями оцифрованного сигнала; 5 - поиск максимального значения и вывод его на экран; 6 - при нажатии кнопки «Stop» происходит остановка обработки и очистка выделенной динамической памяти ЭВМ (рис. 6).

Рисунок 8 – Интерфейс программы ИНПМП-5: 1 – кнопки управления, 2 – графическое обозначение уровней опасности; 3 – уровень напряженности; 4 – значение напряженности; 5 – идентификация нажатия кнопки

Программа прибора ИНПМП-5 позволяет представлять данные в абсолютных значени-

ях напряженности поля и сравнивать их с предельно допустимым уровнем (ПДУ).

С помощью прибора ИНПМП-5 нами были проведены исследования напряженности переменного магнитного поля вблизи электронно-лучевого дисплея персонального компьютера на расстоянии 5 мм через каждые 5 см по огибающей поверхности экрана в А/м. По результатам измерений построена диаграмма (рис. 7), из которой видно, что максимальные значения измеренного параметра наблюдаются на периферии экрана. Π_{Ω} видимому, это связано с недостаточной фокусировкой электронного луча отклоняющей системой электронно-лучевой трубки на определенной глубине люминофорного покрытия в этих областях, однако уровень напряженности поля, тем не менее, не превысил ПДУ.

Рисунок 9 – Диаграмма напряженности магнитного поля вблизи монитора ЭВМ

СПИСОК ЛИТЕРАТУРЫ

- Ишков А.В., Дмитриев С.Ф. Современная концепция сопряжения измерительных приборов с ЭВМ. // Мат. Междунар. н.-т. конф. ИКИ-2007. –Барнаул: АГТУ, 2007. С.3.
- Герасимов В.Г., Клюев В.В., Шатерников В.Е. Методы и приборы электромагнитного контроля промышленных изделий. –М.: Энергоатомиздат, 1983.
- Ханина Т.М., Дмитриев С.Ф. // В сб. «Алтайский университет – науке». –Барнаул: Изд-во АГУ, 1993. С. 40–45.
- Vernon S.N. A single-sided eddy current method to measure electrical resistivity. // Mater. Eval. 1988. 46. №12. P.1581-1587.
- Рябинин А.А., Маеренко А.А., Панов С.Г. и др. Виртуализированный измеритель напряженности переменного магнитного поля ИНПМП-5. // Горизонты образования. Вып.10. 2008.
- Дмитриев С.Ф., Зудилов Е.С. Исследование начальных кривых намагничивания для сплава Fe-Ni марки 81НМА // Вестник ТГУ. Бюлл. опер. научн. инф. № 24. 2005.